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Air pollution consists of chemical, physical, 
or biological agents that can cause harm-
ful effects on humans, animals, and plants.1 

Air pollutants originate from indoor and outdoor 
sources in developing and developed countries, 
making air pollution a worldwide concern.2 The 
Environmental Protection Agency (EPA) has 
defined national ambient air quality standards 
for 6 common air pollutants or “criteria air pol-
lutants,” which include ground-level ozone (O3), 
particulate matter (PM), carbon monoxide 
(CO), sulfur dioxide (SO2), and nitrogen dioxide 
(NO2).3 Interaction between air pollutants and 
sunlight can result in the formation of pro-oxi-
dants, including O3.

4,5 The major source of anthro-
pogenic emissions of oxide gases and PM is the 
combustion of fossil fuels from stationary sources 
and motor vehicles.4,6 PM is a mixture of liquid, 
solid, or liquid and solid particles suspended in 

air that is composed of organic, such as polycy-
clic aromatic hydrocarbons (PAHs), and inor-
ganic components, including transition metals. 
Based on diameter, PM can be divided into 3 cat-
egories: PM10 (<10 μm), PM2.5 (<2.5 μm), and 
ultrafine particles (<100  nm).7,8 Environmental 
tobacco smoke is a complex mixture of thousands 
of chemicals coming from the burning of a ciga-
rette and smoke exhaled from smokers; therefore, 
it represents a major contaminant of indoor air.9,10

Air pollution kills an estimated 7 million people 
worldwide every year; 9 out of 10 people breathe air 
containing high levels of pollutants.11 The adverse 
health effects of exposure to air pollutants have 
been subjected to intense research in the last few 
decades.12,13 Beyond the strong correlation to car-
diovascular and respiratory diseases,13 exposure to 
air pollutants is also involved in the development/
exacerbation of numerous skin disorders.14

SKIN AS A PRIMARY TARGET OF  
AIR POLLUTION

The skin is composed of two main layers: the 
dermis and the epidermis. The dermis consists 
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Summary: Exposure to air pollutants has been now associated with detrimental 
effects on a variety of organs, including the heart, lungs, GI tract, and brain. 
However, recently it has become clear that pollutant exposure can also promote 
the development/exacerbation of a variety of skin conditions, including pre-
mature aging, psoriasis, acne, and atopic dermatitis. Although the molecular 
mechanisms by which pollutant exposure results in these cutaneous pathologi-
cal manifestations, it has been noticed that an inflammatory status is a common 
denominator of all those skin conditions. For this reason, recently, the activa-
tion of a cytosolic multiprotein complex involved in inflammatory responses 
(the inflammasome) that could promote the maturation of proinflammatory 
cytokines interleukin-1β and interleukin-18 has been hypothesized to play a key 
role in pollution-induced skin damage. In this review, we summarize and pro-
pose the cutaneous inflammasome as a novel target of pollutant exposure and 
the eventual usage of inflammasome inhibitor as new technologies to counter-
act pollution-induced skin damage. Possibly, the ability to inhibit the inflam-
masome activation could prevent cutaneous inflammaging and ameliorate the 
health and appearance of the skin.  (Plast. Reconstr. Surg. 147: 15S, 2021.)

Inflammasome Activation in Pollution-Induced 
Skin Conditions
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primarily of fibroblasts, which synthesize collagen 
and elastin. The epidermis is the outer, protec-
tive layer of the skin and consists of keratinocytes, 
which are organized into different layers, based 
on differentiation status. The skin is the primary 
interface between our body and the external envi-
ronment. Thus, its most critical role is to provide a 
strong physiological barrier, which is mediated by 
the outermost layer of the epidermis, the stratum 
corneum. This layer consists of several packed lay-
ers of flattened dead cells, which are constantly 
shed and surrounded by an exterior lipid matrix 
to form a “brick and mortar” shield.15 There are 
four pathways of skin penetration, including 
mechanical delivery, an intracellular route, a tran-
scellular route, and a transfollicular route.16,17 It 
has been suggested that toxins present on PM, 
such as PAHs, can enter systemic circulation 
through hair follicles or transepidermal absorp-
tion.18–20 Common pollutants interacting with the 
skin are pro-oxidant compounds, such as O3 and 
NOx, which initiate a cascade of oxidative dam-
age, resulting, when there is a chronic exposure, 
in the development/exacerbation of various skin 
disorders.21

Some individuals may present a compromised 
skin barrier, due to intrinsic factors, including 
aging22 or genetic predispositions,23–25 or due to 
extrinsic factors, such as repeated exposure to 
external insults, leading to chronic diseases.26,27 
Impaired barrier function results in increased risk 
of absorption and penetration of air pollutants. 
Therefore, individuals with altered barrier func-
tion are particularly sensitive to pollution-induced 
skin disorders.28

MOLECULAR MECHANISMS INVOLVED 
IN POLLUTANT TOXICITY

Pollutant exposure results in the induction of 
an oxidative stress/inflammatory status in cutane-
ous tissues,27 which is exacerbated when pollutants 
act synergistically.29,30 However, the mechanism of 
action of single pollutants varies. For instance, 
O3 does not penetrate the skin; it instantaneously 
interacts with lipids in the upper layers of the epi-
thelium, generating a cascade of ozonation prod-
ucts that drive the production of reactive oxygen 
species (ROS) and aldehydes, such as 4-hydroxy-
2-nonenal.31–35 Other pollutants, such as PM and 
cigarette smoke, also alter skin redox homeostasis 
by inducing lipid peroxidation, albeit in different 
manners. For instance, particles have been sug-
gested to eventually penetrate the skin, trigger-
ing ROS production and lipid peroxidation,36–38 

although this idea is controversial.29 Transition 
metals in PM can undergo Fenton or Fenton-like 
chemistry, resulting in production of the hydroxyl 
radical.39 Furthermore, PAHs can be converted 
into redox-active quinones that stimulate ROS 
production in keratinocytes.39 Moreover, water-
soluble PAHs of cigarette smoke increase NAPDH 
oxidase activity within skin, inducing oxidative 
stress.40,41

Therefore, the effects of these various stress-
ors all result in increased ROS, which are key 
mediators of cellular signaling pathways,42,43 induc-
ing activation of redox-sensitive factors, such 
as proinflammatory nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), acti-
vator protein-1, Nrf2, and heat shock proteins.44–47 
Moreover, 4-hydroxy-2-nonenal, a product of lipid 
peroxidation, is able to interact with DNA and pro-
teins,48,49 forming adducts that damage DNA and 
alter protein conformations.50–53 In skin, pollutant 
exposure results in inflammation, cellular apop-
tosis, and DNA and mitochondrial damage.36–38 
Increased oxidative stress in the skin also stimu-
lates activation of matrix metalloproteinases, which 
breakdown collagen and elastin, contributing to 
skin aging.54 Indeed, the involvement of pollutant 
exposure in skin aging is believed to be due to pol-
lutant-induced activation of the aryl hydrocarbon 
receptor (AhR), promoting skin inflammaging.55–61 
Thus, it is no surprise that both inflammation and 
oxidative stress are displayed in several skin condi-
tions,62–64 and cross-talk between these two condi-
tions results in skin inflammaging.65–69

SKIN CONDITIONS RELATED TO 
POLLUTION

Exposure of skin to air pollutants alters the 
functions of epidermal proteins and damages 
lipids and DNA, leading to a range of skin disor-
ders.70 The most prevalent skin disease associated 
with failure of the skin barrier is atopic dermati-
tis (AD); defects in barrier function can lead to 
increased vulnerability to air pollutants.71 A large 
range of environmental stressors are involved in 
the development or aggravation of AD, such as 
environmental tobacco smoke, volatile organic 
compounds, nitrogen dioxide, and PM.72–76 There 
is clear evidence that individuals living in urban 
areas with higher exposure to vehicle exhaust 
are more likely to develop AD.77–80 Furthermore, 
childhood exposure to environmental tobacco 
smoke is a major risk factor for AD.81 In addition, 
O3 exposure has been correlated with urticaria, 
AD, and contact dermatitis.82
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Skin exposure to environmental stressors is 
also associated with the development/exacer-
bation of psoriasis, aging, cancer, and acne. For 
instance, tobacco smoke is an independent risk 
factor for psoriasis development.83,84 PM is one 
of the main pollutants that contributes to extrin-
sic skin aging, based on cohort studies using the 
SCINEXA aging score.85 Characteristics of aging, 
such as wrinkles and pigmented spots, are more 
frequently observed in subjects living in urban 
areas.85 Premature skin aging is also observed 
in smokers, independently of age, sex, and sun 
exposure, which is known as “smoker’s face.”86,87 
Additionally, PM contains PAHs, which are 
involved in the development of skin cancer.5,7,88,89 
Other studies have demonstrated a link between 
acne vulgaris and air pollution.90,91 Exposure to 
PAHs can lead to acneiform eruptions and chlor-
acne.92 Some studies have also shown a correlation 
between acne severity and the number of smoked 
cigarettes.93,94 In addition, cigarette smoke has 
been associated with androgenetic alopecia.95 In 
conclusion, exposure to environmental stressors 
contributes to the development/exacerbation of 
inflammatory skin diseases and premature aging.

INFLAMMASOME AND SKIN
Inflammasomes are cytosolic multiprotein 

oligomer complexes of the innate immune sys-
tem.96 Activation of these complexes is responsible 
for the release of inflammatory cytokines, includ-
ing interleukin (IL)-1β and IL-18, which protects 
against harmful stimuli (infectious pathogens, 
irritants, dead cells), by modulating immune 
responses in various tissues.97 These complexes 
are composed of a pattern recognition receptor 
sensor, which recognizes pathogen-associated 
molecular patterns or danger-associated molecu-
lar patterns released by dead cells,98 the speck-like 
receptor protein ASC, and the enzyme caspase 1. 
Upon stimuli recognition, ASC complexes with 
the pattern recognition receptor and oligomer-
izes, forming a complex scaffold and interacting 
with pro-caspase 1, promoting its maturation.99 
Once activated, caspase 1 can cleave pro-IL1β and 
IL-18 into their active forms, initiating inflamma-
tion or even causing a type of cell death termed 
pyroptosis.100–102 Excessive production of IL-1β 
and IL-18 is associated with a variety of autoin-
flammatory and autoimmune diseases, thus these 
cytokines are crucial mediators of local and sys-
temic inflammation.103–105

Several studies have demonstrated that 
inflammasome activation is involved in the onset 

of autoinflammatory diseases, neurologic pathol-
ogies, and metabolic disorders.106–108 Importantly, 
inflammasome activation has also been implicated 
in the development/exacerbation of skin inflam-
matory pathologies.109,110 The most well-charac-
terized inflammasomes belong to the Nod-like 
receptor (NLR) and Aim2-like receptor families, 
such as NLRP1, NLRP3, NLRC4, and AIM2, which 
are mainly present in immune cells, although they 
are also found in keratinocytes.111–113 These recep-
tors all display a similar mechanism of activation 
and are induced by a variety of stimuli, including 
LPS, ATP, cytosolic DNA, ROS, and pathogens.114 
Several studies have also demonstrated that pol-
lutants are able to induce inflammasome acti-
vation. For instance, several cardio-pulmonary 
diseases have been shown to be associated with 
NLRP3 inflammasome modulation by particulate 
matter,115–120 cigarette smoke,121,122 and O3.

123–125 
However, although skin is constantly exposed to 
environmental stressors, very few studies have 
demonstrated whether pollutant exposure trig-
gers inflammasome activation in skin. Thus, 
only the role of UV light has been appreciated; 
activation of NLRP1, NLRP3, AIM2, and NLRC4 
inflammasomes can be induced by UVB expo-
sure in human keratinocytes.126–130 A recent study 
also demonstrated that the NLRP1 inflamma-
some can be activated by O3 exposure in differ-
ent human skin models via redox regulation.131 
Thus, environmental stressors may promote the 
development/exacerbation of skin conditions by 
inducing inflammasome activation, and open-
ing a new area of research in preventing stressor-
induced skin damage and inflammation (Fig. 1).

INFLAMMASOME AND SKIN 
PATHOLOGIES

Dysregulation of inflammasome-associated 
cytokines, such as IL-1 beta and IL-18, is known 
to induce excessive immune cell infiltration and 
perpetuates skin inflammation, leading to the 
onset of several skin disorders, such as Cryopyrin-
Associated Periodic Syndrome, familial cold auto-
inflammatory syndrome (FCAS), Muckle–Wells 
syndrome, and neonatal-onset multisystem inflam-
matory disease.132–134 In recent years, other skin 
pathologies that display an altered production of 
interleukins, such as acne, psoriasis, and atopic 
dermatitis, have also been correlated with altered 
inflammasome activity.135–143 Indeed, several stud-
ies have demonstrated that high levels of both 
IL-1β and inflammatory caspases, which are known 
to be modulated by inflammasomes,144 are found 
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in psoriatic and dermatitis murine models,145,146 
as well as in human psoriatic skin explants.147,148 
Higher levels of AIM2 inflammasomes, induced 
by cytosolic DNA, have been found in human 
keratinocytes of psoriatic lesions, which can be 
suppressed by binding of the antimicrobial pep-
tide LL-37 to cytosolic DNA.149,150 Mutations of the 
NLRP1 inflammasome have been associated with 
vitiligo, atopic dermatitis, psoriasis, cancer, and 
photoaging.151–153 Moreover, a recent study dem-
onstrated that the high levels of IL-1β associated 
with the development of a Th17 micro-milieu, dis-
played in several autoinflammatory diseases (like 
psoriasis and atopic dermatitis), were induced by 
activation of the NLRP1 inflammasome via cas-
pase-5 maturation.154 Single-nucleotide polymor-
phisms in NLRP1 have also been associated with 
a higher susceptibility to psoriasis155 and non-seg-
mental vitiligo in humans.156 Other studies have 
investigated the role of NLRP3 in different skin 
pathologies and have found that altered expres-
sion of NLRP3 is associated with psoriasis and 
atopic dermatitis in humans and mice.157,158 In 
addition, inhibition of the NLRP3 inflammasome 
via metformin in human keratinocytes can actu-
ally prevent caspase 1 maturation and consequent 
IL-1β production, ameliorating psoriatic symp-
toms.159 Moreover, Propionibacterium acnes, which 
plays a pivotal role in acne development, has been 

shown to activate NLRP3 in acne lesions.160–162 
Multiple studies have demonstrated that higher 
levels of NLRP3-induced caspase 1 and IL-1β can 
be prevented by several compounds in different 
models of acne.163,164 Finally, since skin aging is 
associated with systemic inflammation and oxi-
dative stress, mainly due to the activities of envi-
ronmental stressors,165,166 different studies have 
demonstrated that excessive inflammasome activ-
ity can lead to the onset of premature aging, par-
ticularly in the case of UV exposure,167,168 which 
can also cause photodamage and skin cancer.169,170

INFLAMMASOME AS A NEW TARGET 
FOR PREVENTING POLLUTION-

INDUCED SKIN DAMAGE
Currently, many inflammasome inhibitors 

have been investigated as treatments for inflam-
matory diseases. Some of these inhibitors directly 
target NLRP3,171 by modifying cysteines, bind-
ing to the NLRP3 NACHT domain, or inhibit-
ing the ATPase activity of NLRP3.172–174 MCC950 
is an NLRP3 inflammasome-selective inhibitor 
that blocks canonical and non-canonical NLRP3-
induced ASC oligomerization in mice in vivo and 
in human cells in vitro.175 MCC950 reduces skin 
inflammation in mice with allergic dermatitis and 
Cryopyrin-Associated Periodic Syndrome175 and 

Fig. 1. Exposure to environmental stressors and inflammasome activation. Exposure of the skin to ozone (O3), cigarette smoke 
(CS), and particulate matter (PM) induces lipid peroxidation (i.e., production of 4-hydroxynonenal) and production of reactive 
oxygen species (ROS), which can stimulate inflammasome activation. Stressor-induced activation of the inflammasome results in 
skin inflammation, leading to the development/exacerbation of a variety of skin conditions, including premature aging, psoriasis, 
atopic dermatitis, and acne.
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prevents dermal inflammation.176 Recently, BAY 
11-7082 was proposed as a promising treatment 
for psoriasis-like dermatitis, based on its ability to 
dually inhibit both NF-κB and NLRP3.177

An alternative way to inhibit inflammasome 
activation is by targeting inflammasome-asso-
ciated proteins or the non-canonical inflam-
masome pathway. Drugs targeting downstream 
mediators, such as caspase-1 or IL-1β, have dem-
onstrated therapeutic action in many inflam-
mation-associated diseases.178–180 For example, 
anakinra, an IL-1R antagonist, has been used for 
treating melanoma.181 Canakinumab, an IL-1β-
specific monoclonal antibody, has been used 
in patients with Cryopyrin-Associated Periodic 
Syndrome182; Ac-YVAD-CHO, an inhibitor of cas-
pases, is currently under investigation for treat-
ing psoriasis.145,183 The main drawback of using 
these inhibitors is that they may cause systemic 
immune suppression.184 Moreover, some caspase 
inhibitors cause hepatoxicity.185 However, some 
drugs initially used to treat diabetes, such as gly-
buride and metformin, have shown potential in 
vitro and in vivo in treating skin diseases by pre-
venting NLRP3 inflammasome activation.159,186,187 
Furthermore, endogenous molecules such as 
the cathelicidin LL-37, superoxide dismutase-3, 
and dietary omega-3 fatty acids have been shown 
to suppress inflammasome-related skin patholo-
gies.157,188,189 However, most of the existing data 
on inflammasome inhibition comes from in 
vitro or in vivo experiments in animal models, 
and these studies have primarily focused only 
on targeting the NLRP3 inflammasome. Future 
studies should focus on whether targeting 
other types of skin-associated inflammasomes, 
such as NLRP1 or Aim2, can prevent the devel-
opment/exacerbation of inflammatory skin 
disorders.153,190–192 In addition, it would be inter-
esting to test whether targeting multiple types of 
inflammasomes ameliorates inflammatory skin 
conditions, since it is likely that multiple types 
of inflammasomes are activated in these skin dis-
orders simultaneously.193

Moreover, medicinal phytocompounds 
(including aloe vera, resveratrol, and curcumin) 
have been characterized as potent inhibitors of 
NLRP3 inflammasome-mediated IL-1βproduction 
in vitro and in vivo.126,193–199 Some antioxidant topi-
cal treatments have shown beneficial effects in 
targeting the inflammasome for treating psoriasis 
and P. Acnes infection in human skin explants and 
murine models.163,164,200–204 Despite demonstrated 
therapeutic effects in reducing inflammation, uti-
lizing polyphenols as therapeutics is limited by the 

fact that the bioavailability of these compounds is 
very variable.

Another caveat in targeting the inflamma-
some to prevent the development/exacerbation 
of stressor-associated skin conditions is whether 
inhibitors should be applied systemically, topi-
cally, or in combination. Systemic administration 
of inflammasome inhibitors has demonstrated 
efficiency in preventing several inflammasome-
associated diseases, including Alzheimer’s 
disease and multiple sclerosis.184 Topical applica-
tion to treat skin diseases could prevent systemic 
immune suppression, depending on penetra-
tion into the skin, although topical application 
may also limit the efficacy of these drugs, since 
inflammasome activation in infiltrating immune 
cells and underlying fibroblasts likely contrib-
utes to the development/exacerbation of the 
aforementioned skin conditions. Moreover, sys-
temic application via ingestion may simultane-
ously prevent the development/exacerbation 
of other pathologies associated with inflamma-
some activation, such as Alzheimer’s and cardio-
vascular disease.

CONCLUSIONS
Overall, the inflammasome should be inves-

tigated as a target to prevent the development/
exacerbation of stressor-associated skin condi-
tions, including atopic dermatitis, psoriasis, 
acne, and premature aging. Although numerous 
strategies to target the inflammasome have been 
explored, none of these studies have investigated 
the efficacy of preventing stressor-induced skin 
damage and inflammation by inhibiting inflam-
masome activation. Moreover, different modes of 
application, such as systemic and topical, should 
be explored to determine the most effective route 
of administration. It is possible that targeting the 
inflammasome machinery would result in improv-
ing skin health and postponing the extrinsic cuta-
neous inflammaging.
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