

THE IMPACT OF DIESEL EXHAUST PARTICLES ON INFLAMMATORY AND OXIDATIVE STRESS RESPONSES IN A **3D** *in vitro* epidermal model

IRINI DIJKHOFF^{1,2}, BENEDETTA PETRACCA^{1,2}, BARBARA DRASLER¹, MARC EEMAN², BARBARA ROTHEN-RUTISHAUSER¹ ¹ Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland; ² Dow Silicones Belgium, Seneffe, Belgium

Β

1. BACKGROUND

- Diesel exhaust has detrimental effects on the pulmonary [1] and cardiovascular system [2].
- The skin functions as one of the main primary barriers to the outside environment. It protects against various environmental influences.
- Ambient air pollution is impacting the skin [3]. It is associated with premature aging, inflammatory and allergic skin conditions.

2. RESEARCH QUESTIONS

- How to model the effect of diesel exhaust particles on the skin?
- What are the cellular and molecular pathways involved upon exposure of the skin to diesel exhaust particles?
- How is the skin's barrier function affected?

3. METHODOLOGY

Stratum corneum Stratum granulosum

Stratum spinosum

Stratum basale

Supporting membrane

Figure 1A. Workflow of a 3D in vitro reconstructed human epidermal model for diesel exhaust particle (DEP) exposure. Skin model reconstructed from foreskin-derived neonatal human primary keratinocytes, cultured on a polycarbonate membrane. Topical application of DEP, SRM2975 at 1-100 μ g/cm² in 30 μ L/cm² PBS.

B

Figure 1B. Schematic representation of epidermal layers and morphology of 3D epidermal **model.** Paraffin embedded tissue sectioned at a 5 µm thickness and stained with Hematoxylin and Eosin. Scale bar represents 20 µm.

4. RESULTS

Decreased mitochondrial activity upon DEP exposure in tissue with compromised barrier 150-Control % Mitochondrial activity relative to vehicle Compromised 100-**50** 10 Helen DEP DEP Luglon DEP 1. Welch DEP 10 HBlen DEP 005. ctrl.

Increased pro-inflammatory response upon DEP exposure in tissue with compromised barrier

Figure 2A. Trans Epithelial Electrical Resistance (TEER) measured with MilliCell ERS-2 Volt-Ohm meter after 24 hours of calcium depletion. Positive control (Pos. ctrl.) is 0.08% Triton X-100 topically applied. n=4.

Figure 2B. Mitochondrial activity measured with MTT and MTS assays after 24 hours. Pos. ctrl. is 2.5 mM H₂O₂. n=2 for compromised barrier, n=3 for vehicle control and positive control.

Figure 2C. Interleukin 8 (IL-8) secretion measured with enzymelinked immunoabsorbent assay (ELISA) after 24 hours. Pos. ctrl. is 200 µg/mL lipopolysacharide. n=8 for compromised barrier, n=12 for vehicle control and positive control.

Bars represent mean of biological replicates. Error bars represent standard deviation. Grey dotted lines represent vehicle control. Statistical analysis: One-way ANOVA, Dunnett's multiple comparison test to vehicle control. * is adjusted P-value (* < 0.01; ** < 0.05; **** <0.0001).

5. CONCLUSIONS AND OUTLOOK

- Calcium depletion disrupted the barrier integrity of the reconstructed human epidermal model, resulting in a compromised barrier function.
- DEP can trigger pro-inflammatory responses in an epidermal model with a compromised barrier function.
- Expanding research from exposure to diesel exhaust particles to complete diesel exhaust and ambient air.

6. **REFERENCES**

- 1. S. Steiner, C. Bisig, A. Petri-Fink, and B. Rothen-Rutishauser, "Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms.," Arch. Toxicol., vol. 90, no. 7, pp. 1541–53, 2016.
- 2. N. Martinelli, O. Olivieri, and D. Girelli, "Air particulate matter and cardiovascular disease: A narrative review," Eur. J. Intern. Med., vol. 24, no. 4, pp. 295–302, 2013.
- 3. S. E. Mancebo and S. Q. Wang, "Recognizing the impact of ambient air pollution on skin health," J. Eur. Acad. Dermatology Venereol., vol. 29, no. 12, pp. 2326–2332, 2015.

FUNDING

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765602.

CONTACT

Irini.dijkhoff@unifr.ch www.citycare-itn.eu

